NANCY RAWSON KNOWS how to get a cat to finish its vegetables. Pyrophosphates have been described to me as “cat crack.” Coat some kibble with it, and you, the pet-food manufacturer, can make up for a whole host of gustatory shortcomings. Rawson has three kinds of pyrophosphate in her office. They’re in plain brown-glass bottles, vaguely sinister in their anonymity. I asked to try them, which, I think, has won me some points. Sodium acid pyrophosphate, known affectionately as SAPP, is part of the founding patent for AFB, yet almost no one who works for the company has ever asked to taste it. Rawson finds this odd. I do too, though I also accept the possibility that other people would find the two of us odd.
Rawson is dressed today in a floral-print skirt, on the long side, with low-heeled brown boots and a lightweight plum-colored sweater. She is tall and thin, with wide, graceful cheek and jaw bones. She looks at once like someone who could have worked as a runway model and someone who would be mildly put off to hear that. She is brainy and hard working, committed to her job in a way you don’t necessarily expect pet-food people to be. Before she was hired at AFB, she was a nutritionist at Campbell’s Soup Company, and before that, she did research on animal taste and smell at the Monell Chemical Senses Center.
Rawson unscrews the cap of one of the bottles. She pours a finger of clear liquid into a plastic cup. Though pet-food palatants most often take the form of a powder, liquid is better for tasting. To experience taste, the molecules of the tastant—the thing one is tasting—need to dissolve in liquid. Liquid flows into the microscopic canyons of the tongue’s papillae, coming into contact with the “buds” of taste receptor cells that cover them. That’s one reason to be grateful for saliva. Additionally, it explains the appeal of dunking one’s doughnuts.
Taste is a sort of chemical touch. Taste cells are specialized skin cells. If you have hands for picking up foods and putting them into your mouth, it makes sense for taste cells to be on your tongue. But if, like flies, you don’t, it may be more expedient to have them on your feet. “They land on something and go, ‘Oooo, sugar!’’’ Rawson does her best impersonation of a housefly. “And the proboscis automatically comes out to suck the fluids.” Rawson has a colleague who studies crayfish and lobsters, which taste with their antennae. “I was always jealous of people who study lobsters. They examine the antennae, and then they have a lobster dinner.”
The study animal of choice for taste researchers is the catfish,* simply because it has so many receptors. They are all over its skin. “Catfish are basically swimming tongues,” says Rawson. It is a useful adaptation for a limbless creature that locates food by brushing up against it; many catfish species feed by scavenging debris on the bottom of rivers.
I try to imagine what life would be like if humans tasted things by rubbing them on their skin. Hey, try this salted caramel gelato, it’s amazing. Rawson points out that a catfish may not consciously perceive anything when it tastes its food. The catfish neurological system may simply direct the muscles to eat. It seems odd to think of tasting without any perceptive experience, but you may be doing it right now. Humans have taste receptor cells in the gut, the voice box, the upper esophagus, but only the tongue’s receptors report to the brain. “Which is something to be thankful for,” says Danielle Reed, Rawson’s former colleague at Monell. Otherwise you’d be tasting things like bile and pancreatic enzymes. (Intestinal taste receptors are thought to trigger hormonal responses to molecules, such as salt and sugar, and defensive reactions—vomiting, diarrhea—to dangerous bitter items.)
We consider tasting to be a hedonic pursuit, but in much of the animal kingdom, as well as in our own prehistory, the role of taste was more functional than sensual. Taste, like smell, is a doorman for the digestive tract, a chemical scan for possibly dangerous (bitter, sour) elements and desirable (salty, sweet) nutrients. Not long ago, a whale biologist named Phillip Clapham sent me a photograph that illustrates the consequences of life without a doorman. Like most creatures that swallow their food whole, sperm whales have a limited-to-nonexistent sense of taste. The photo is a black-and-white still life of twenty-five objects recovered from sperm whale stomachs. It’s like Jonah set up housekeeping: a pitcher, a cup, a tube of toothpaste, a strainer, a wastebasket, a shoe, a decorative figurine.
Enough stalling. Time to try the palatant. I raise the cup to my nose. It has no smell. I roll some over my tongue. All five kinds of taste receptors stand idle. It tastes like water spiked with strange. Not bad, just other. Not food.
“It may be that that otherness is something specific to the cat,” says Rawson. Perhaps some element of the taste of meat that humans cannot perceive. The feline passion for pyrophosphates might explain the animal’s reputation as a picky eater. “We make [pet food] choices based on what we like,” says Reed, “and then when they don’t like it, we call them finicky.”