Seveneves: A Novel

Somewhat paradoxically to laypersons, the added mass of the asteroid made Izzy much better at staying aloft. Before Amalthea, the station had lost two kilometers of altitude every month, making it necessary to reboost it by firing a rocket engine on its aft end. In the early days, that engine had been the built-in one mounted on the Zvezda module. But in general they simply used the engine belonging to whatever spacecraft happened to be docked to Izzy’s aft-most module.

 

In those days Izzy had been like a kite: all surface area, no mass. In technical terms, it had had a low ballistic coefficient: a way of saying that it was strongly affected by what little atmosphere there was. Once Amalthea had been attached, it was like a kite with a big rock strapped to it. It had a high ballistic coefficient. The rock’s momentum bulled through the evanescent atmosphere and led to much slower orbital decay. But by the same token, when it came time to reboost Izzy’s orbit, a longer burn and a larger amount of propellant were needed in order to accelerate all of that iron and nickel.

 

Since the Scouts and the Pioneers had begun adding more bits onto Izzy, its ballistic coefficient had been dropping again, and boost burns had come more frequently. And it was always the case that thrusters had to be fired every now and again to correct the station’s altitude. All of it grew more problematic as more was added onto the basic structure. Izzy had been an ungainly construct even before all the new pieces had been added onto it. Thrust applied to one part of it would ramify through the other modules as various parts of the truss and other structural members took up the strain and passed it on down the line. To put it in the simplest possible terms, Izzy had gotten all floppy as more stuff was attached to it, and its floppiness made it difficult to reboost the orbit or even to tweak the angle at which it “flew” through space. They had allowed the orbit to decay by a serious amount, over sixteen kilometers, during the busiest part of the Pioneers’ efforts, but now reboosting had to become a routine operation. And every firing of the engine on the bottom of H2 revealed structural weaknesses that had to be jury-rigged, sometimes literally with zip ties and duct tape, before it could proceed.

 

During the span of time from about A+0.144 to 250, the watchword was “consolidation,” inevitably trimmed to “consol.” It basically meant the retrofitting of new trusswork around the hamster tubes and other sprawling constructs that had been added to the truss during the frantic first couple of months. Other problems were addressed at the same time, most notably the building of more radiators for dumping waste heat into space. These didn’t work if they were too closely spaced—they just shone heat on one another. So the heat rejection complex waxed enormous and ended up growing generally aftward, like an empennage—the feathers on the butt of an arrow. It was no mere figure of speech. In the same way that an arrow’s heavy head and spreading feathers kept it pointed straight forward, the combination of massive Amalthea at the forward end and the heat radiators trailing away aft helped keep Izzy pointed in the right direction and somewhat reduced the demand for thruster firings. It also protected the radiators from micrometeoroids. Rocks could theoretically come from any direction and strike the space station, but they were most likely to hit its forward end, and so forward-facing surfaces of the space station’s modules had generally been equipped with shields. Amalthea, of course, was the biggest and best shield of all.

 

The number of solar panels might have grown too, had they been doing things the old way. But very early in the Cloud Ark project it had become obvious that, while photovoltaics might be a useful adjunct, the only sure way to keep everything running was with the small nuclear devices called RTGs, or radioisotope thermoelectric generators. These made heat all the time, whether you wanted them to or not, and so created further demand for radiators.

 

Neal Stephenson's books