Women, on the other hand, had to wield their intellects like a scythe, hacking away against the stubborn underbrush of low expectations. A woman who worked in the central computing pools was one step removed from the research, and the engineers’ assignments sometimes lacked the context to give the computer much knowledge about the afterlife of the numbers that bedeviled her days. She might spend weeks calculating a pressure distribution without knowing what kind of plane was being tested or whether the analysis that depended on her math had resulted in significant conclusions. The work of most of the women, like that of the Friden, Marchant, or Monroe computing machines they used, was anonymous. Even a woman who had worked closely with an engineer on the content of a research report was rarely rewarded by seeing her name alongside his on the final publication. Why would the computers have the same desire for recognition that they did? many engineers figured. They were women, after all.
As the computers’ work grew in scope and importance, however, a girl who impressed engineers with her mathematical prowess might be invited to join them working full-time for their tunnel or group. More groups meant more opportunities for women to get closer to the research and establish their bona fides. Computing pools attached to specific tunnels or branches grew larger, spawned their own supervisors, and gave the female professionals the opportunity to specialize in a particular subfield of aeronautics. A computer who could process data on the spot and understand how to interpret it was more valuable to the team than a pool computer with more general knowledge. That kind of specialization would be the key to managing the increasingly complex nature of aeronautical research in the postwar era. Freed from the wartime imperative of drag cleanup—the process of refining existing planes to eke out small improvements in their performance—the aerodynamicists turned their attentions to an enemy more difficult to defeat than the Axis forces: the speed of sound.
The development of the turbojet engine in the early 1940s meant that Langley engineers finally had a powerful enough propulsion system to make their high-speed wing concepts, like R. T. Jones’s swept-back delta wings, which were angled backward like the wings of a swift—a high-flying bird—really fly. Langley added state-of-the-art facilities on the West Side like the seven-by-ten-foot High-Speed Tunnel and the four-by-four-foot Supersonic Pressure Tunnel, machines that could blast models with winds that approached or exceeded the mysterious speed of sound. The NACA empire also continued the course of its westward expansion, building up its staff and facilities at the Cleveland and Ames laboratories.
In 1947, a party of thirteen Langley employees, including two former East Computers, was sent to the Mojave Desert to establish the Dryden High-Speed Flight Research Center, a direct assault on the problems of faster-than-sound flight. The speed of sound, about 761 miles per hour at sea level in dry air at 59 degrees Fahrenheit, varied depending on temperature, altitude, and humidity. It was long thought to be a physical limit on the maximum speed of an object moving through the air. As an airplane flying at sea level in dry air approached Mach 1, or 100 percent of the local speed of sound, air molecules in front of the flying plane piled up and compressed, forming a shock wave, the same phenomenon that caused the noise associated with the crack of a bull whip or the firing of a bullet.
Some scientists speculated that if a pilot succeeded in pushing his plane through the sound barrier, either the plane or the pilot or both would disintegrate from the force of the shock waves. But on October 14, 1947, pilot Chuck Yeager, flying over the Mojave Desert in an NACA-developed experimental research plane called the Bell X-1, pierced the sound barrier for the first time in history, a fact that was corroborated by the female computers on the ground who analyzed the data that came from the instruments on Yeager’s plane.
There were too few women at Muroc to warrant sending them off into a separate section. In the isolation of the desert, in close working conditions at a bare-bones facility with ramshackle dormitories, the Muroc computers stepped easily into the role of junior engineers. Upward mobility was more difficult to achieve in the larger, more bureaucratic operation at Mother Langley, with a well-developed management structure. Even there, however, a few pioneers were managing to clear a path of sorts for other women to follow. Mathematician Doris Cohen, a native New Yorker who started working at the laboratory in the late 1930s, was for many years the NACA’s lone female author. Not even Pearl Young, the NACA’s first female engineer and the founder of the agency’s rigorous editorial review process, left behind research with her name on it.
From 1941 through 1945, Doris Cohen published nine reports documenting experiments conducted at the frontier of high-speed aeronautical research, five as the sole author, and four coauthored with R. T. Jones (whom she would eventually marry). It was the kind of prodigious output that even aspiring male engineers could only hope to replicate. Getting one’s name on a research report was a necessary first step in the career of an engineer. For a woman, it was a significant and unusual achievement. It provided public acknowledgment that she had contributed to a worthy line of inquiry and inked her fingerprints onto findings that would be circulated widely among the aeronautical community. Authors of a report were identified as important members of a team; proximity to the work was everything. As more of the women in the computing pools transferred to engineering groups—and as new computers were hired into sections from their first day of work, without serving time in the pools—it gave the women the chance to move away from “working the machines” and rote plotting and to get closer to the research report, which was the laboratory’s most important product.
The strongest evidence of the progress Langley’s women were making in the early postwar years came when one of its most visible female professionals reached the end of the road. Over the course of twelve years, Virginia Tucker had ascended from a subprofessional employee to the most powerful woman at the lab. She had done much to transform the position of computer from a proto-clerical job into one of the laboratory’s most valuable assets. Her relentless recruitment efforts at the Women’s College of the University of North Carolina—in 1949, the largest all-female college in America—and other all-female schools had given hundreds of educated women a shot at a mathematics career. All of the agency’s computing staffs, at Langley, Cleveland, Ames, and Muroc, traced their lineage back to the first pool, and to Tucker’s labor as the first female computer supervisor. Between 1942 and 1946, four hundred Langley computers received training on Tucker’s watch.
The East Computing of the war years, a section with so many employees that the women had been forced to set up in hallways or closets or anywhere that could accommodate them, now fell victim to its own success. Veteran East Computers left for permanent assignments in the tunnels, and no new girls were hired into the pool to replace them. The core group, which had been housed in an office in the Nineteen-foot Pressure Tunnel on the East Side, dwindled away. Girls now reported directly to their engineers or to the computer supervisors attached to the group. Virginia Tucker was a respected manager, but unlike Doris Cohen, she hadn’t pursued the researcher’s path and had no research credit to her name. She held a senior position for a woman but found herself without an obvious next step at Langley. In 1947, the laboratory disbanded East Computing, rerouting all open assignments to West Computing. Virginia Tucker, too, decided to head west. She accepted a job at the Northrop Corporation, one of many aviation companies tucked into the suburban sprawl of Los Angeles. The company hired her as an engineer.